

Tools: ELF sensors & modelling

UNIVERSITY OF LIÈGE, MONTEFIORE INSTITUTE

C. GEUZAINE, V. BEAUVOIS, J. ARBAN, M. SPIRLET, T. BRITTE, J. LINOTTE

FR

www.bbemg.be

Introduction

In the context of the BBEMG the University of Liège develops two tools:

- 1. A new ELF magnetic field exposure probe that can be manufactured at low cost
 - Version 1 designed, manufactured and tested in 2021-2025
 - Successful proof-of-concept: specifications compatible with BBEMG research objectives
 - Version 2 currently being designed, with the aim of manufacturing a batch of probes that can be deployed in the field
- 2. A numerical simulation tool to predict ELF electric and magnetic fields near powerlines and underground cables

Use-cases for the ELF probe

	Sampling periodicity	Duration	Range
50Hz monitoring agriculture	1 min → 1 h	Max. possible	$0.1~\mu T \rightarrow 100~\mu T$
50Hz monitoring wearable / general public	$2 s \rightarrow 1 min$	Min. 24 h	$0.1~\mu T \rightarrow 100~\mu T$
50Hz monitoring wearable / professionals (e.g. ELIA)	1 s → 1 min	Min. 8 h	$0.1~\mu T \rightarrow 10~mT$
50Hz monitoring fixed (lines, cables, transformers, residential installations)	1 min → 1 h	Min. 24 h	$0.1 \ \mu T \rightarrow 100 \ \mu T$
50Hz cartography (e.g. urban, on bikes at max. 20 km/h)	Min. possible (target: 0.5 s)	Min. 2 h	$0.1~\mu T \rightarrow 100~\mu T$

(EMDEX II min. sampling 1.5 s - EMDEX HIGH FIELD max. field 12 mT)

Focus on satisfying the low magnetic field use-cases (0.1 μ T to 100 μ T)

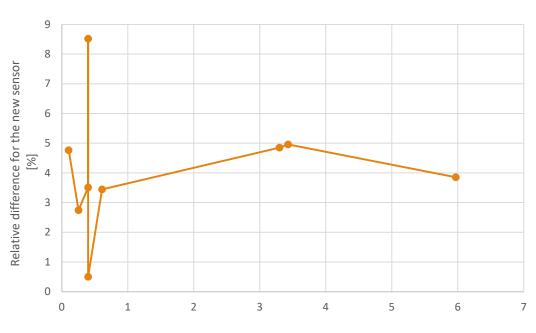
Version 1 circuit board incorporates

- Magnetic field sensor
- Low-power microcontroller
- Bluetooth communication
- GPS receiver
- Memory
- Batteries

EMDEX II next to Version 1

Encapsulated in weather-resistant enclosure

Measured loop current / Distance from the loop / Measurement axis	Theoretical value [uT]	Maschek EMS 100 (reference) [uT]	Version 1 (AK sensor) [uT]
19.70 A / 1 m / Z-axis	3.94	3.43	3.6
19.47 A / 0.6 m / Z-axis	6.49	5.97	6.2
10.82 A / 0.6 m / Z-axis	3.6	3.3	3.46
0 A / 0.6 m / Z-axis	0	0.002	0.005
0.845 A / 0.6 m / Z-axis	0.282	0.255	0.262
2 A / 0.6 m / Z-axis	0.667	0.61	0.631
1.316 A / 0.6 m / Z-axis	0.437	0.399	0.413
1.316 A / 0.6 m / X-axis	0.437	0.399	0.433
1.316 A / 0.6 m / Y-axis	0.437	0.399	0.401
0.361 A / 0.6 m / Y-axis	0.12	0.105	0.11
0 A / 0.6 m / Y-axis	0	0.001	0.0025

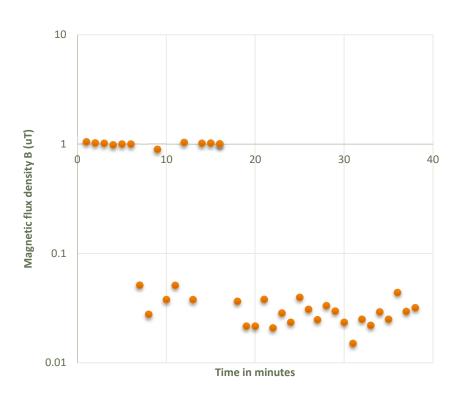


Validation in the ACE laboratory of the University of Liège

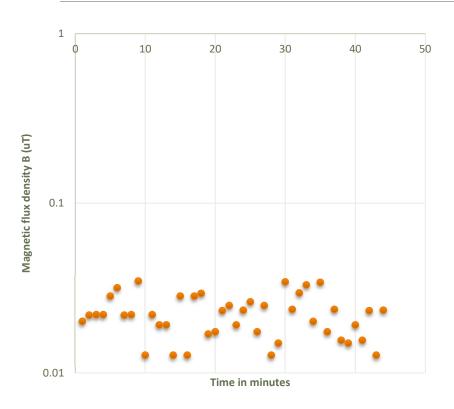
Reference magnetic flux density (B) measured with the Maschek ESM 100 field probe [uT]

Validation in the ACE laboratory of the University of Liège

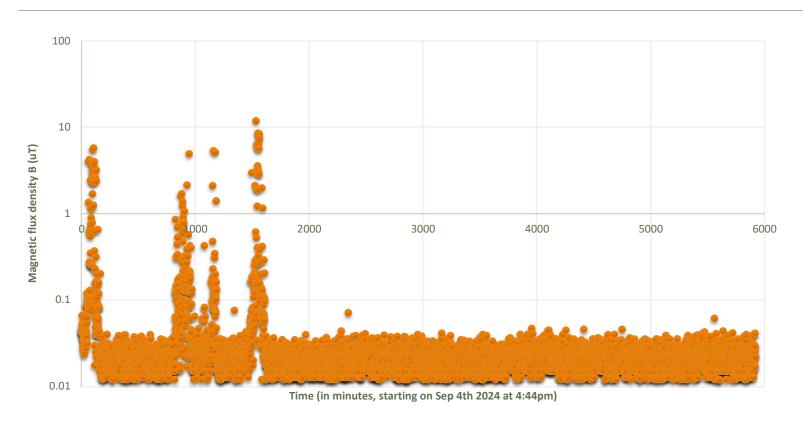
Bill of materials for Version 1 is about 100 euros


Most expensive parts:

- Rechargeable batteries
- Weather-resistant enclosure
- Memory



Typical measurement in a kitchen close to a fryer



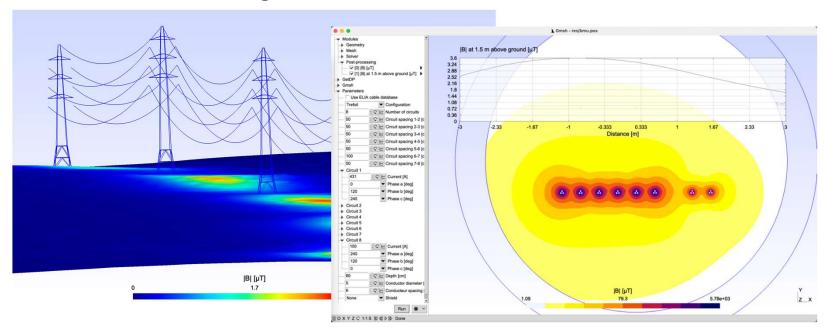
Typical measurement on an office desk

Multi-day measurement with home-work commute

What's next?

Version 2 of the ELF probe is under development:

- Microcontroller replaced with more powerful chip for faster data processing
- Lithium-Ion battery to improve autonomy (> 7 days)
- Optimization of the PCB layout to reduce footprint
- Dedicated button for Bluetooth control
- Electromagnetic compatibility validation
- Software interface running on smartphones and tablets, to
 - display and retrieve the measurement data
 - configure the main functions of the probe (sampling rate, sampling periodicity)



Numerical simulation tool

Based on open source Gmsh & GetDP software developed at ULiège – now handles

- 3D power lines with true topography
- General cable configurations

Thanks for your attention cgeuzaine@uliege.be